Abstract

A characteristic photoluminescence signal is identified for a two-dimensional electron gas (2DEG) confined at an Al0.2Ga0.8N/GaN heterointerface fabricated on an ammonothermal GaN (AT-GaN) substrate. The use of a gas-phase synthesized NH4Cl acidic mineralizer reduced oxygen contamination in AT-GaN by two orders of magnitude, and metalorganic vapor phase epitaxy of atomically smooth, coherent AlGaN/GaN heterostructures was realized. The emission originating from the 2DEG is interpreted using self-consistent Schrödinger–Poisson calculation, taking the interfacial immobile charge due to polarization discontinuity into account. The initial decay time at low temperature was close to that of the bulk free excitons, reflecting the lifetime of photoexcited holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.