Abstract

Most of the previous studies on nanosecond (ns) laser-induced plasma typically use relatively short ns laser pulses (pulse duration less than ∼30 to 50 ns). In this paper, relatively long ns laser pulses with 200 ns duration have been used, and the produced plasma during metal ablation in air at atmospheric pressure has been studied through time-resolved observation using an intensified charge-coupled device camera. Due to the much longer ns laser pulse duration, the plasma radiation intensity distribution and the plasma front propagation have different physical features from those produced by much shorter ns laser pulses. In particular, it has been observed that during the laser pulse the plasma has two high-radiation-intensity regions: one is located right above the target surface while the other is behind the expanding plasma front. The former region will disappear once the laser pulse completes. This interesting physical phenomenon has been rarely reported, and requires further experimental and modeling study to completely understand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.