Abstract

We report on the time-resolved dynamics of a single magnetic domain wall (DW) under the influence of a tunable barrier in a Fe-rich microwire. The energy barrier was created by applying a local magnetic field antiparallel to the uniform driving field used to depin and propagate the DW along the wire. This originates the braking and eventually the trapping of the DW depending on the magnitude of the antiparallel local field. The motion of the DW through the local field becomes stochastic for minimum magnetic field values close to the measured friction field (Hfr = 24.4 A/m). This phenomenon is caused by fluctuations in the pinning field associated to the different types of local defects and residual stress existing in the wire. The probability for the DW to overcome the barrier has been estimated for different values of the local field. When the minimum applied field is lower than the fluctuating friction field the DW is always trapped.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.