Abstract

Research interest in dynamic assemblies of coordination polymers (CPs) has been rising in recent years for the similarity with life systems in their self-adaptable morphologies and properties. However, monitoring of the assembly process and elucidating the nature for the morphological transformation are very challenging. Here, UV-Vis spectroscopy has been explored as a time-resolved method for monitoring the self-assembly of Au(I)–thiolate CPs in situ. Both step-wise and synergetic effects of the weak interactions in Au(I)–3-mercaptopropionic acid (MPA) CPs, such as H-bonding, coordination bonding, Au(I)–Au(I) interactions and static interactions have been found from the spectral fingerprints, which elucidated the driving forces for the unique morphological transformations from strings to lamellar structures. This work represents a breakthrough in that dynamic self-assembly behaviours can be explained by molecular interactions from molecular level evidences. Based on the spectral fingerprint–structure relationship the reversible and dynamic assembly of Au(I)–MPA CPs can be easily probed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.