Abstract

The nanoscale kinetics of surface topography evolution on silicon surfaces irradiated with 1 keV Ar${}^{+}$ ions is examined in both directions perpendicular and parallel to the projection of the ion beam on the surface. We use grazing incidence small angle x-ray scattering to measure in situ the evolution of surface morphology via the linear dispersion relation. We study the transition from surface ultra-smoothening at low angles of deviation from normal ion incidence to a pattern-forming instability at high incidence angles. A model based on the effects of impact-induced redistribution of those atoms that are not sputtered away explains both the observed ultra-smoothening at low angles from normal ion incidence and the instability at higher angles and accounts quantitatively for the measured two-dimensional dispersion relation and its dependence on incidence angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.