Abstract
We present the technical integration of state-of-the-art picosecond diode laser sources and data acquisition electronics in conventional laser scanning microscopes. This procedure offers users of laser scanning microscopes an easy upgrade path towards time-resolved measurements. Our setup uses picosecond diode lasers from 375 to 800 nm for excitation which are coupled to the microscope via a single mode fiber. The corresponding emission is guided to a fibre coupled photon counting detector, such as Photomultiplier Tubes (PMT) or Single Photon Avalanche Diodes (SPAD). This combines the outstanding sensitivity of photon counting detectors with the ease of use of diode laser sources, to allow time-resolved measurements of fluorescence decays with resolutions down to picoseconds. The synchronization signals from the laser scanning microscope are fed into the data stream recorded by the TimeHarp 200 TCSPC system, via the unique Time-Tagged Time-Resolved (TTTR) data acquisition mode. In this TTTR data acquisition mode each photon is recorded individually with its specific parameters as detector channel, picosecond timing, global arrival time and, in this special application, up to three additional markers. These markers, in combination with the global arrival time, allow the system software to reconstruct the complete image and subsequently create the full fluorescence lifetime image (FLIM). The multi-parameter data acquisition scheme of the TimeHarp 200 electronics not only records each parameter individually, but offers in addition the opportunity to analyse the parameter dependencies in a multitude of different ways. This method allows for example to calculate the fluorescence fluctuation correlation function (FCS) on any single spot of interest but also to reconstruct the fluorescence decay of each image pixel and detector channel for advanced Forster Resonance Energy Transfer (FRET) analysis. In this paper, we present some selected results acquired with standard laser scanning microscopes upgraded towards temporal resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.