Abstract

The complexation of the lanthanide Eu(III) and the actinides Cm(III) and Am(III) by N3- was investigated by application of time-resolved laser fluorescence spectroscopy (TRLFS) and X-ray absorption spectroscopy (XAFS) in the ionic liquid solution of C4mimTf2N (1-butyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide). TRLFS measurements show that the interaction of azide with Eu(CF3SO3)3 and Eu(ClO4)3 results in both dynamic luminescence quenching by collisional encounters of N3- with Eu(III) and static luminescence quenching by inner-sphere complexation of Eu(III) by N3-. Hereby, the complexation of Eu-triflate by azide starts at a lower N3- concentration as compared to the perchlorate salt. The authors ascribe this phenomenon to a stronger bonding of ClO4- toward the metal ion than triflate, as well as to a stronger electrostatic repulsion of N3- by the perchlorate ligand. In both actinide samples (Cm(ClO4)3, Am(ClO4)3), the complexation with azide exhibits a clear kinetic hindrance. Nevertheless, mixed actinide-perchlorate-azide complexes are formed after several days in C4mimTf2N. The different reaction kinetics for the Ln- and An-complexation by azide may provide the opportunity for an effective separation of lanthanides from actinides in the nuclear fuel cycle by the use of N-based extractants in ionic liquid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.