Abstract
Recent studies in three-dimensional spintronics propose that the Œrsted field plays a significant role in cylindrical nanowires. However, there is no direct report on its impact on magnetic textures. Here, we use time-resolved scanning transmission x-ray microscopy to image the dynamic response of magnetization in cylindrical Co30Ni70 nanowires subjected to nanosecond Œrsted field pulses. We observe the tilting of longitudinally magnetized domains toward the azimuthal Œrsted field direction and create a robust model to reproduce the differential magnetic contrasts and extract the angle of tilt. Furthermore, we report the compression and expansion, or breathing, of a Bloch-point domain wall that occurs when weak pulses with opposite signs are applied. We expect that this work lays the foundation for and provides an incentive to further studying complex and fascinating magnetization dynamics in nanowires, especially the predicted ultra-fast domain wall motion and associated spin wave emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.