Abstract

The lowest excited triplet (T(1)) states of magnesium and zinc tetraphenylporphines (MgTPP and ZnTPP) were studied by time-resolved (TR) high-frequency/high-field W-band electron paramagnetic resonance (hf-EPR) spectroscopy in rigid glasses at low temperatures. Inspections of the TR-hf-EPR spectra of the spin-polarized triplets revealed that the zero field splitting (ZFS) parameters, D and E, for MgTPP and ZnTPP triplets were nearly the same. At the same time, their g-tensors were found to be different. These results are interpreted quantitatively in terms of spin-orbit couplings (SOCs) and angular momenta among the excited states, giving a magnitude of SOC in the T(1) state of ZnTPP. For the first time, both the TR-hf-EPR spectra and corresponding time profiles were acquired on the ZnTPP's triplet at room temperature in liquid paraffin solution with the populations of the electron spin states being in Boltzmann equilibrium. Because of relatively fast paramagnetic relaxation in rotating triplet at room temperature, the spectra and time profiles were free from the effects of microwave saturation that allowed for the direct measurement of the absolute intersystem crossing ratios P(x):P(y):P(z) 0.085:0.085:0.83. All of these results have demonstrated advantages and new perspectives of the W-band EPR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.