Abstract
Transient gain spectra were measured for an In0.02Ga0.98N / In0.16Ga0.84N multiple quantum well by using the variable-stripe-length method (VSLM) in combination with the ultrafast optical Kerrgate (OKG) technique. Gain dynamics were measured for a range of excitation lengths from short (50 μm) to long (350 μm) stripes with the sample under femtosecond photoexcitation. Analysis of the temporal behaviour of gain and chemical potential suggests that stimulated emission originates from a photoexcited electron-hole plasma at early times; at later times, localized states dominate as the electron-hole plasma becomes exhausted. Gain reduction at early times is attributable to coupling of the electron-hole plasma with photons along the stripe, whilst localized states are less susceptible to gain saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.