Abstract

Over the years, the emissive characteristics (spectral, temporal, and polarization) of fluorophores have been widely used to probe a wide variety of systems. Fluorescence lifetime and rotational reorientation time measurements, in particular, offer a means to elucidate key details about complex systems. Further, because fluorescence occurs on the nanosecond (10 −9 s) timescale, competing or perturbing kinetic processes like collisional quenching, solvent relaxation, energy transfer, and rotational reorientation can affect the fluorescence and hence be quantified. Thus, a carefully chosen and “placed” fluorophore can serve as an reporter on a wide range of nanosecond or faster events. This contribution is divided into three sections. The Theory section discusses time-resolved anisotropy and intensity decay kinetics (time and frequency domains), pump–probe spectroscopy, and up-conversion. The second section describes time-correlated single photon counting (TCSPC) and multifrequency phase-modulation fluorescence instruments. The final section is divided into subsections on the use of time-resolved fluorescence: (1) to study solvation dynamics, biochemical systems, polymer photophysics, and organized media; (2) as a tool in the separation sciences, microscopy, and sensing; and (3) coupled with multiphoton excitation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call