Abstract

Quantitative and qualitative evaluations of structure and composition are important in monitoring development of engineered vascular tissue both in vitro and in vivo. Destructive techniques are an obstacle for performing time-lapse analyses from a single sample or animal. This study demonstrates the ability of time-resolved fluorescence spectroscopy (TRFS) and ultrasound backscatter microscopy (UBM), as nondestructive and synergistic techniques, for compositional and morphological analyses of tissue grafts, respectively. UBM images and integrated backscatter coefficients demonstrate the ability to visualize and quantify postimplantation changes in vascular graft biomaterials such as loss of the external elastic lamina and intimal/medial thickening over the grafted region as well as graft integration with the surrounding tissue. TRFS results show significant changes in spectra, average lifetime, and fluorescence decay parameters owing to changes in collagen, elastin, and cellular content between normal and grafted tissue regions. These results lay the foundation for the application of a catheter-based technique for in vivo evaluation of vascular grafts using TRFS and UBM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.