Abstract

Electrochemical synthesis has been rapidly developed over the past few years, while a vast majority of the reactions proceed through a radical pathway. Understanding the properties of radical intermediates is crucial in the mechanistic study of electrochemical transformations and will be beneficial for developing new reactions. Nevertheless, it is rather difficult to determine the "live" radical intermediates due to their high reactivity. In this work, the formation and structure of sulfonamide N-centered radicals have been researched directly by using the time-resolved electron paramagnetic resonance (EPR) technique under electrochemical conditions. Supported by the EPR results, the reactivity of N-centered radicals as a mediator in the hydrogen atom transfer (HAT) approach has been discussed. Subsequently, these mechanistic study results have been successfully utilized in the discovery of an unactivated C(sp3)-H arylation reaction. The kinetic experiments have revealed the rate-determined step is the anodic oxidation of sulfonamides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call