Abstract

A time-resolved EPR and ENDOR study of the photoexcited triplet state of the free-base tetraphenylchlorin has been made in a polycrystalline toluene matrix at 120 K. Crystallization of the toluene results in a partially aligned sample. The nature of the orientation of the solute molecules is investigated by time-resolved EPR spectroscopy using the anisotropy of the zero-field splitting tensor of the triplet state as the observable parameter. It is determined that 55% of the triplet molecules are oriented in a single crystal-like domain with the triplet z-axes oriented within 15° of the magnetic field. In the ENDOR study selective excitation, of only those molecules which have their triplet z-axes parallel to the magnetic field, has permitted the measurement of the Azzcomponent of the hyperfine coupling tensor of protons, in the reference frame of the zero-field splitting tensor. The sign and magnitude of the matrix couplings are also determined. The use of the partially oriented sample drastically enhanced the signal intensity over that achieved in a randomly oriented sample by increasing the number of molecules with their triplet z-axes parallel to the magnetic field. Additionally, time-resolved ENDOR spectroscopy allowed the hyperfine interactions to be determined at far higher temperatures than usual for the study of triplet states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call