Abstract

Surface nanosecond dielectric barrier discharge has been studied in air and at pressures ranging from 1 to 5 bar, with a coaxial geometry of the electrodes for positive and negative polarities of the high-voltage pulses. Pulses of a 24-55 kV amplitude on the electrode, positive or negative polarity, 20 ns duration, 0.5 ns rise time and 10 Hz repetitive frequency were used to initiate the discharge. ICCD images of the discharge development have been taken with a 2 ns gate. In the case of discharges in nitrogen, the emissions of molecular bands of the first negative and second positive systems of molecular nitrogen have been measured, and the dependence of their ratio versus pressure and distance from the high-voltage electrode has been analyzed. A comparison of the discharge development has been made in the case of negative and positive polarities at the high-voltage electrode. Ignition delay times under the action of a high-voltage nanosecond discharge have been studied and compared with autoignition delays in a rapid compression machine (RCM). The nanosecond Surface Dielectric Barrier Discharge (SDBD) was initiated in a quasi-uniform radial geometry in the proximity of the end plate of the combustion chamber of the RCM. Experiments were performed for methane and n-butane containing mixtures diluted by Ar or N2 for temperatures and pressures at the end of compression respectively ranging from 650 to 1000 K and 6 to 16 bar. A significant decrease of the ignition delay time is observed, when compared to autoignition experiments. The possibility to ignite lean mixtures is demonstrated. Preliminary experiments in the region of negative temperature coefficient for stoichiometric n-butane:oxygen mixture diluted with argon, are performed. The threshold voltage for plasma ignition, over which the ignition delay is decreased, is studied for different mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call