Abstract

To compare contrast characteristics and image quality of 1.0 M gadobutrol with 0.5 M Gd-DTPA for time-resolved three-dimensional pulmonary magnetic resonance angiography (MRA). Thirty-one patients and five healthy volunteers were examined with a contrast-enhanced time-resolved pulmonary MRA protocol (fast low-angle shot [FLASH] three-dimensional, TR/TE = 2.2/1.0 msec, flip angle: 25 degrees, scan time per three-dimensional data set = 5.6 seconds). Patients were randomized to receive either 0.1 mmol/kg body weight (bw) or 0.2 mmol/kg bw gadobutrol, or 0.2 mmol/kg bw Gd-DTPA. Volunteers were examined three times, twice with 0.2 mmol/kg bw gadobutrol using two different flip angles and once with 0.2 mmol/kg bw Gd-DTPA. All contrast injections were performed at a rate of 5 mL/second. Image analysis included signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements in lung arteries and veins, as well as a subjective analysis of image quality. In patients, significantly higher SNR and CNR were observed with Gd-DTPA compared to both doses of gadobutrol (SNR: 35-42 vs.17-25; CNR 33-39 vs. 16-23; P < or = 0.05). No relevant differences were observed between 0.1 mmol/kg bw and 0.2 mmol/kg bw gadobutrol. In volunteers, gadobutrol and Gd-DTPA achieved similar SNR and CNR. A significantly higher SNR and CNR was observed for gadobutrol-enhanced MRA with an increased flip angle of 40 degrees. Image quality was rated equal for both contrast agents. No relevant advantages of 1.0 M gadobutrol over 0.5 M Gd-DTPA were observed for time-resolved pulmonary MRA in this study. Potential explanations are T2/T2*-effects caused by the high intravascular concentration when using high injection rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.