Abstract

The time-optimal control problem of a spacecraft equipped with reaction wheels has been studied, in which the spacecraft is constrained to sequentially assume a set of attitudes, whose order is not specified. This attitude scheduling problem has been solved as a multiphase mixed-integer optimal control problem in which binary functions have been introduced to model the choice of the optimal sequence of target attitudes and to enforce the constraint of adopting once and only once each attitude. Given the dynamic model of the spacecraft, the initial and final attitudes, and a set of target attitudes, solving this problem consists in finding the control inputs, the sequence of attitudes with the corresponding passage times, and the resulting trajectory of the spacecraft that minimize the time of the maneuver. The multiphase mixed-integer optimal control problem has been converted into a mixed-integer nonlinear programming problem first making the unknown passage times through the target attitudes part of the state, then introducing binary variables to discretize the binary functions, and finally applying a fifth-degree Gauss-Lobatto direct collocation method to tackle the dynamic constraints. The resulting problem has been solved using a nonlinear programming-based branch-and-bound algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call