Abstract
Fresh status updates are vital to the efficient operation of network monitoring and real-time control applications. In this paper, we consider a mobile edge computing (MEC)-assisted status update system, where smart devices extract valuable status updates from sensed data to achieve timely awareness of the surroundings by exploiting computational resources at the device and edge server. To quantify the freshness of status updates obtained by executing computation tasks, we employ the concept of age of information (AoI) to characterize the timeliness of status updates. To cope with the limited energy at devices, we investigate a joint task generation and computation offloading scheme under a given energy budget for minimizing the age of obtained status updates. The age minimization problem is modeled as a constrained Markov decision process (CMDP). To obtain the optimal policy, we derive the structural properties of the optimal deterministic policy and propose a lightweight structure-based status update algorithm in the case of known channel statistics. Moreover, we consider a more realistic scenario without prior knowledge of channel statistics, and propose a Q-learning-based status update algorithm to make online decisions. Simulation results show that the performance of our proposed algorithms is competitive when compared with existing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.