Abstract

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are both pluripotent stem cells from early embryos. Another type of pluripotent stem cells, which are similar with EpiSCs and derive from pre-implantation embryos in feeder-free and chemically defined medium containing Activin A and basic fibroblast growth factors (bFGF), is termed as AFSCs. The pluripotency and self-renewal maintenance of ESCs rely on Leukemia inhibitory factor (LIF)/STAT/BMP4/SMAD signaling, while the pluripotency and self-renewal maintenance of EpiSCs and AFSCs rely on bFGF and Activin/Nodal signaling. However, the establishment efficiency of AFSCs lines is low. In this study, we stimulated early embryos by 2i/LIF (CHIR99021 + PD0325901 + LIF) and Activin A + bFGF respectively, to change the cell fate in inner cell mass (ICM). The "fate changed embryos" by 2i/LIF can efficiently produce AFSCs in feeder-free and chemically defined medium, but the efficiency of embryos treated with Activin A + bFGF were poor. The AFSCs from fate-changed embryos share similar molecular characteristics with conventional AFSCs and EpiSCs. Our results suggest that the advanced stimulation of 2i/LIF and the premature stimulation of Activin A + bFGF contribute to capturing the pluripotent stem cells in early embryos, and the FGF/MAPK signaling dominate early embryo development. Our study provides a new approach to capturing pluripotency from pre-implantation embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call