Abstract

We present a careful analysis of the point-source detection limit of the AKARI All-Sky Survey in the WIDE-S 90-μm band near the North Ecliptic Pole (NEP). Timeline analysis is used to detect IRAS (Infrared Astronomy Satellite) sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90-μm flux of a source. Combined with a robust noise measurement, the point-source flux detection limit at signal-to-noise ratio (S/N) > 5 for a single detector row is 1.1 ± 0.1 Jy which corresponds to a point-source detection limit of the survey of ∼0.4 Jy. Wavelet transform offers a multiscale representation of the Time Series Data (tsd). We calculate the continuous wavelet transform of the tsd and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non-IRAS sources detected in timeline analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non-IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.