Abstract
In this study, the temporal variation in soil salinity dynamics was monitored and analyzed using electromagnetic induction (EMI) in an agricultural area in Port Said, Egypt, which is at risk of soil salinization. To assess soil salinity, repeated soil apparent electrical conductivity (ECa) measurements were taken using an electromagnetic conductivity meter (CMD2) and inverted (using a time-lapse inversion algorithm) to generate electromagnetic conductivity images (EMCIs), representing soil electrical conductivity (σ) distribution. This process involved converting EMCI data into salinity cross-sections using a site-specific calibration equation that correlates σ with the electrical conductivity of saturated soil paste extract (ECe) for the collected soil samples. The study was performed from August 2021 to April 2023, involving six surveys during two agriculture seasons. The results demonstrated accurate prediction ability of soil salinity with an R2 value of 0.81. The soil salinity cross-sections generated on different dates observed changes in the soil salinity distribution. These changes can be attributed to shifts in irrigation water salinity resulting from canal lining, winter rainfall events, and variations in groundwater salinity. This approach is effective for evaluating agricultural management strategies in irrigated areas where it is necessary to continuously track soil salinity to avoid soil fertility degradation and a decrease in agricultural production and farmers’ income.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.