Abstract
The time-lag effects of droughts on vegetation responses vary significantly across a large-scale river basin. The spatio-temporal response characteristics obtained are important for decision making processes on the allocation and transportation of regional water resources in mitigating drought impacts. Here we consider the Xijiang (West River) basin in South China as a case study, which has experienced severe drought events since the beginning of the 21st century. A threshold level approach is employed to identify the major drought events over the basin in the first decade of this century. The vegetation responses to land soil water evolution are examined, particularly for the severe drought events occurred. The time-lag effects of the vegetation responses within the basin range within 0–96 days. The lower reaches of the headwater sub-basins in the west part of the Xijiang basin are identified as the regions with short time-lag effects. The enhanced vegetation index (EVI) shows consistent responses to the soil water evolution in conjunction with the climate aridity in this area, which is the drought-vulnerable area in the Xijiang basin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.