Abstract

The electrophysiological brain activities are nonlinear in nature as measured by Electroencephalography (EEG). There are coherent activities in brain not only seen during explicit tasks but also during rest. This article aims to employ most robust nonlinear dynamics Time Frequency representation (TFR) techniques such as wavelet phase coherence to investigate brain activity in different frequency bands at temporal and spatial scale dynamics in form of topographic maps in resting state networks. The TFR has the advantages to study the combined effect of time and frequency domains simultaneously. The wavelet coherence computed in this way exhibit high precision to detect the phase coherence in different frequency intervals to analyze highly complex non-autonomous and non-stationary EEG signals. The spatiotemporal dynamics of resting state networks are investigated by computing coherence. We have investigated the Wavelet based Phase coherence of oscillations of eye closed and eye open signals during resting states. The wavelet coherence is computed for selected 19 electrodes according to 10-20 system from 129 channel EEG signals. The significance was obtained using Wilcoxon Signed Rank test and pairwise wavelet coherence was computed for each possible combination. The Wavelet Phase Coherence using Wavelet Transform gives significantly high results (P<0.05) in EC and EO signals during resting states in frequency interval 0.5-50 Hz overall as well as in the band intervals such as delta (05-4 Hz), theta (4-7 Hz), alpha (7-13 Hz), beta (13-22 Hz) and gamma (22-50 Hz). By computing the spatial wavelet phase coherence, we observed significant pathways including sagittal factor (anterior-posterior interhemispheric) and lateral factor (perpendicular to anterior-posterior axis). The lateral factor differences have less affect than the sagittal factor. Each band was involved in different activities in some way, however alpha band showed distinct anteriorposterior activity when the eye-closed coherence was higher than the eye open coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.