Abstract

Many deterministic and random physical signals can be modeled as the output of a multi-input-multi-output (MIMO) dynamical system. Since physical signals are typically nonstationary, their frequency content changes with time. To understand this time variation, we transform the MIMO system to the time-frequency domain. The result is a time-frequency MIMO dynamical system, whose input and output are the time-frequency spectra of the original input and output signals in the time domain. The time-frequency system reveals the spectral mechanisms involved in the generation of nonstationary signals. We apply our method to the case of a MIMO system with two vibrational modes and a nonstationary noise at the input. We obtain the time-frequency spectrum of the output, which shows how the spectrum of the modes changes with time. This result cannot be achieved with classical spectral techniques, because they require the input random process to be wide sense stationary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.