Abstract
AbstractRecently, deep learning methods have achieved considerable performance in gesture recognition using surface electromyography signals. However, improving the recognition accuracy in multi-subject gesture recognition remains a challenging problem. In this study, we aimed to improve recognition performance by adding subject-specific prior knowledge to provide guidance for multi-subject gesture recognition. We proposed a time–frequency feature transform suite (TFFT) that takes the maps generated by continuous wavelet transform (CWT) as input. The TFFT can be connected to a neural network to obtain an end-to-end architecture. Thus, we integrated the suite into traditional neural networks, such as convolutional neural networks and long short-term memory, to adjust the intermediate features. The results of comparative experiments showed that the deep learning models with the TFFT suite based on CWT improved the recognition performance of the original architectures without the TFFT suite in gesture recognition tasks. Our proposed TFFT suite has promising applications in multi-subject gesture recognition and prosthetic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.