Abstract
An atomic system that can be addressed via a single optical mode, hereafter called a one-dimensional atom, is central for many applications in optical quantum technologies. A cavity with a large Purcell factor is required to collect the emission efficiently, but a small Purcell factor is required for long-time memory storage. Here, we introduce an effective and versatile one-dimensional atom consisting of two interacting quantum emitters efficiently coupled to a cavity mode with a large Purcell factor. The dipole–dipole interaction gives rise to a subradiant state with a tunable bandwidth. We demonstrate generation of time-shaped single photons and implementation of quantum memory. We discuss experimental challenges and practical implementation using different systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.