Abstract

Low wall shear stress (WSS) and high oscillatory shear index (OSI) influence plaque formation, yet little is known about their role in progression/regression of established plaques because of lack of practical means to calculate them in individual patients. Our aim was to use computational fluid dynamics (CFD) models of patients with carotid plaque undergoing statin treatment to calculate WSS and OSI in a time-efficient manner, and determine their relationship to plaque thickness (PT), plaque composition (PC), and regression. Eight patients (68 +/- 9 yr, one female) underwent multicontrast 3 T MRI at baseline and six-month post statin treatment. PT and PC were measured in carotid segments (common-CC, bifurcation-B, internal-IC) and circumferentially in nonoverlapping 600 angles and correlated with CFD models created from MRI, ultrasound, and blood pressure. PT was highest in B (2.42 +/- 0.98 versus CC: 1.60 +/- 0.47, IC: 1.62 +/- 0.52 mm, p < 0.01). Circumferentially, plaque was greatest opposite the flow divider (p < 0.01), where the lowest WSS and highest OSI were observed. In B and IC, PT was inversely related to WSS (R = -0.28 and -0.37, p < 0.01) and directly related to OSI (R = 0.22 and 0.52, p < 0.05). The total plaque volume changed from 1140 +/- 437 to 974 +/- 587 mm3 at six months (p = 0.1). Baseline WSS, but not OSI, correlated with changes in PT, necrotic tissue, and hemorrhage in B and IC, but not CC. CFD modeling took 49 +/- 18 h per patient. PT and PC correspond to adverse WSS and OSI in B and IC, and WSS is modestly but significantly related to changes in PT after short-term statin treatment. Regional hemodynamics from CFD can feasibly augment routine clinical imaging for comprehensive plaque evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.