Abstract

We present simulations of the transmission and reflection of narrow-extent pulses incident upon a chiral sculptured thin film (STF) along its axis of spirality, when the circular Bragg phenomenon is excited. Even though the frequency-domain reflection and transmission spectrums of a sufficiently thick chiral STF slab acquire final shapes within the Bragg regime, the shape and the duration of the transmitted pulse change with slab thickness over the entire range of our simulations. The emergence of a multiple-hump structure in the transmitted pulse is relevant to the use of chiral STFs in digital optics communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call