Abstract

The paper derives the finite element equation for acoustic wave in time domain and presents a transparent-plus-attenuation boundary condition. Forward modeling demonstrates that the boundary condition absorbs boundary reflection wave very well. On these bases, we derive the equation satisfied by elements of Jacobi matrix used in the inversion of the physical property parameters of acoustic media. In fact, the equation is the same as that of forward modeling in form. Only the right force item is different. So with the same method of forward modeling, we can get the elements of Jacobi matrix. Because the elements are variable with time and the present inversion does not permit too many unknowns. We integrate the finite elements with the same physical property as one unknown structure unit (for example, a horizontal layer or an oblique layer, etc.) and inverse the physical property parameters of these unknown structure units instead all element's unknown parameters. The method greatly reduces calculation time and saves computer memory. Also, it improves the accuracy of the inversion results and improves the stability of the solving process. The inversion equations are solved with QR decomposition method. Model results prove that the full wave equation inversion method in time domain is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.