Abstract
Loads acting on ship side-shell structures are complex and vary randomly over time. The current study proposes a direct calculation procedure for the fatigue assessment of ship side-shell structures. The calculation procedure is characterised by nonlinear time-domain hydrodynamic simulations followed by finite element (FE) analyses. Sensitivity and feasibility analyses of the proposed time-domain procedure were carried out, and the calculated fatigue damages were compared with full-scale measurements made on a container vessel. Fatigue life analyses were carried out by both the spectral method and the time-domain approach. In addition, two approaches for local stress analysis are presented and discussed: an engineering-based definition of the stress concentration factor (SCF) and a proposed local stress factor (LSF) that utilises stress ranges extracted from the stress history. The results from the fatigue analysis using the LSF indicated a shorter fatigue life than the results obtained using the SCF. This difference is observed because the LSF accounts for the effects of wave-induced loads under ship operation conditions in a more realistic manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.