Abstract

A novel floating wave energy converter (BFWEC) with multiple ‘bean shape’ floats and a hydraulic power-take-off system (HPTO) is presented. The overall setup consists of a central buoy (C·B.) connected to a set of floats around it using a lever arm and is position restrained using a taut-mooring system. Three configurations of BFWEC are proposed with four, six, and eight number of floats. A detailed numerical analysis is carried out by modeling the device in a time-domain using an open-source code: WEC-Sim (Wave Energy Converter Simulator), assuming potential wave theory (PWT). By incorporating HPTO to all the three configurations, simulations are performed in monochromatic waves. Appropriate parameters of HPTO components for each configuration are estimated for the maximum capture width of BFWEC. The effect of the HPTO damping coefficient in maximizing the output of BFWEC is also assessed. Despite the dimensions of BFWEC tailored to the shallow-intermediate Indian waters, the device is simulated with extreme wave characteristics to test its conversion characteristics under the wave conditions away from the resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.