Abstract

The dynamics of the title reaction are investigated using both time-dependent wave packet quantum scattering and quasi-classical trajectory (QCT) methods on adiabatic ground 1(2)A' potential energy surface (PES). Compared with the quantum results of reaction probabilities of H + FCl(J=0) → HF + Cl/HCl + F, the QCT method is proven feasible and further employed to produce integral cross sections and rate constants. Significant resonance structures are observed in the reaction probabilities using the quantum method; however, there are some undulations in the calculated QCT integral cross sections for both product channels. A comparison between the quantum mechanical coupled-channel (CC) calculation and centrifugal sudden approximation calculation reveals the very important role of Coriolis coupling effects in the quantum calculation. Comparisons between the calculated thermal rate constants for both reactions and the previous theoretical and experimental results have been done. HCl product formation is favored over the HF product in the reactive system. Finally, the HF products are found to be mainly forward scattering, and the HCl products are mainly backward scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call