Abstract
We consider a class of abstract evolutionary variational inequalities arising in the study of contact problems for viscoelastic materials. We prove an existence and uniqueness result, using standard arguments of time-dependent elliptic variational inequalities and Banach's fixed point theorem. We then consider numerical approximations of the problem. We use the finite element method to discretize the spatial domain and we introduce spatially semi-discrete and fully discrete schemes. For both schemes, we show the existence of a unique solution, and derive error estimates. Finally, we apply the abstract results to the analysis and numerical approximations of a viscoelastic contact problem with normal compliance and friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.