Abstract

A combination of experimental and computational methods are developed, for predictions of nonlinear viscoelastic creep of polymers in sheet form, subjected to inhomogeneous stress states and stress history. A recently proposed multiaxial constitutive model for glassy polymers was implemented in a commercial finite element (FE) package. The model was tested by means of creep experiments on PMMA at elevated temperature, using specimens with a central circular hole. The experiments were performed using a tensile creep machine, and the geometric Moire fringe method was employed for measuring strain distribution. The results obtained from the experiment and FE analysis were compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.