Abstract

We calculate resonant inelastic X-ray scattering spectra of pyrazine at the nitrogen K-edge in the time domain including wavepacket dynamics in both the valence and core-excited state manifolds. Upon resonant excitation, we observe ultrafast non-adiabatic population transfer between core-excited states within the core-hole lifetime, leading to molecular symmetry distortions. Importantly, our time-domain approach inherently contains the ability to manipulate the dynamics of this process by detuning the excitation energy, which effectively shortens the scattering duration. We also explore the impact of pulsed incident X-ray radiation, which provides a foundation for state-of-the-art time-resolved experiments with coherent pulsed light sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.