Abstract

In previous papers we discussed results from fully time-dependent radiative transfer models for core-collapse supernova (SN) ejecta, including the Type II-peculiar SN 1987A, the more "generic" SN II-Plateau, and more recently Type IIb/Ib/Ic SNe. Here we describe the modifications to our radiative modeling code, CMFGEN, which allowed those studies to be undertaken. The changes allow for time-dependent radiative transfer of SN ejecta in homologous expansion. In the modeling we treat the entire SN ejecta, from the innermost layer that does not fall back on the compact remnant out to the progenitor surface layers. From our non-LTE time-dependent line-blanketed synthetic spectra, we compute the bolometric and multi-band light curves: light curves and spectra are thus calculated simultaneously using the same physical processes and numerics. These upgrades, in conjunction with our previous modifications which allow the solution of the time dependent rate equations, will improve the modeling of SN spectra and light curves, and hence facilitate new insights into SN ejecta properties, the SN progenitors and the explosion mechanism(s). CMFGEN can now be applied to the modeling of all SN types

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call