Abstract

Time-dependent failure possibility (TDFP) can reasonably measure the safety degree of time-dependent structure under fuzzy uncertainty, but there lacks design optimization under the constraint of TDFP for the trade-off of the performance and the safety. Thus, a time-dependent failure possibility-based design optimization (T-PBDO) under fuzzy uncertainty is established, and a time-dependent performance measure approach (T-PMA) for solving T-PBDO is proposed in this paper. In the proposed T-PMA, the TDFP constraint is equivalently transformed into the performance function constraint corresponding to the required target TDFP. The minimum performance target point (MPTP) and its corresponding time instant in the performance function constraint with respect to the target TDFP are determined by the single-loop optimization method of inverse TDFP analysis. This strategy completed by the inverse TDFP analysis with respect to the target TDFP can avoid analysis of the performance function under the unnecessary membership level, and then lead to improve the numerical stability and computational efficiency of solving the T-PBDO model. A numerical and three engineering case studies are introduced to verify the effectiveness of the proposed method. The results show that the proposed T-PMA is accurate, and its efficiency is higher than that of the direct optimization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.