Abstract

This article is a review of double-layer convection in which the pattern formation arises due to a competition between the bulk motions in each fluid (see Figure 1). An instability takes place when the temperature difference between the upper and lower walls reaches a threshold value, and the response of the two-layer system depends on the properties of the constituent fluids. Our motivation is the search for patterns formed in non-equilibrium fluid dynamical systems which exhibit time-dependence at or near the onset of a pattern. Such a time-dependent state is predicted for the two-layer Rayleigh-Benard system and is accessible experimentally as well as theoretically. We expect to see oscillatory and spatio-temporal chaotic behavior. The presence of the interface and the coupling between the fluids in this model problem may provide an understanding of generic behaviors in related applications, such as the modeling of the earth’s mantle as a two-layer convecting system [3, 11], and liquid encapsulated crystal growth [19].Key wordsPattern formationdouble-layer convection

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call