Abstract

AbstractThis paper presents a theoretical analysis of the combined effects of anisotropic porous material and thermal stratification on the transient natural convection fluid flow in an asymmetrically heated vertical parallel channel. The solutions of the governing equations for the temperature and velocity fields are obtained using Laplace transform technique, Riemann sum approximation, and the D'Alembert method. The choice of the D'Alembert method is to provide a simple decoupling procedure for the coupled governing equations while still retaining their original orders. The research established that owing to the layering effect induced by the thermal stratification , the temperature and the velocity distributions of the fluid are found to be attenuated with an increase in thermal stratification. It is also observed that the inclusion of anisotropic parameters in the transport equations aids in regulating the fluid velocity, temperature, Nusselt number, skin friction, and mass flow rate. In addition, by neglecting the anisotropic parameter and taking into account the adiabatic stratification of the fluid, the numerical values for the mass flow rate of the present research favorably compared with the numerical results obtained by Singh et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.