Abstract

In-depth understanding of how methane diffuses in porous media like coal is critical for enhanced coalbed methane recovery and coal seam methane drainage. However, the classic unipore gas diffusion model can only describe methane diffusion behavior in coal at the early time diffusion stage. Describing the whole methane diffusion behavior in coal has not been reasonably addressed in the coalbed methane field. Considering the large surface-to-volume ratio of coal, the authors proposed a time-dependent gas diffusion model to describe the whole diffusion process. This work first proposed a power–law relationship between diffusion coefficient and time according to previous studies of the time-dependent gas diffusion process in porous media. Then, both the analytical solution and its approximation solution for the time-dependent gas diffusion model were derived. Six methane diffusion tests in crushed coal were conducted to validate the proposed model under different pressures (0.5, 1.5, 2.5 MPa) and temperatures (20 and \(30\,{^{\circ }}\hbox {C}\)). Modeling results show that the time-dependent gas diffusion model is superior to the classic unipore gas diffusion model for describing the whole methane diffusion process in coal. Increasing temperature always accelerates methane diffusion in coal; the higher the temperature the larger the diffusion coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call