Abstract

In this study, a comprehensive time-dependent mathematical model for gas separation through the facilitated transport membranes (FTMs) is presented. The model results have been validated with independent CO2/N2 binary gas mixture experiments in DEA-impregnated PVA membranes. In the proposed model, non-equal diffusion coefficients of the carrier/complex and equilibrium constant for the chemical reaction kinetics between the carrier/permeant in the FTM have been considered. In addition, a method to compute the diffusion coefficients, which depend on the concentration of each component in the FTM, is presented. Moreover, effect of carrier concentration, feed partial pressure, kinetics of reversible chemical reactions and membrane performances depending on operating condition have been analyzed. Owing to accurate calculation of physical–chemical parameter involved, this model is much more executive comparing to previous works. In addition, the real condition of the reaction kinetics and influencing of diffusion parameters of the components in FTMs, have been investigated. The predicted selectivity and permeability revealed good conformity with experimental data; with standard deviation (SD) 8.57% and 12.87%, respectively. In conclusion, this model with significant validity would be predictive in cases for the entire range of diffusion-limit to a chemical-limit regime where the experimental data, geometry condition, physical–chemical property of parameters is not available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.