Abstract
The dynamics of a confined fluid of Bose atoms is treated within the linear response regime, with a view to establishing a current-density functional formalism for an inhomogeneous superfluid state. After evaluating in full detail a simplified case of an external coupling to the density and phase of the condensate, the theory is extended to include the coupling to the total current density. The Kohn–Sham response functions of the condensate and all the exchange-correlation kernels for the superfluid are introduced from the microscopic equations of motion and are expressed in a physically transparent way through functional derivatives of correlation functions. A microscopic formula for the superfluid density is derived and used to introduce a generalized hydrodynamic approach for a weakly inhomogeneous two-fluid model in isothermal conditions. Local-density expressions are thereby derived for the velocities of first and second sound in the weakly inhomogeneous superfluid and for visco-elastic functions describing the transition from the hydrodynamic to the collisionless regime. Landau's hydrodynamic theory and known results in Green's functions language are recovered in the limiting case of a homogeneous superfluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.