Abstract

We have investigated the role of arachidonic acid, a putative retrograde messenger, in a one-trial aversive learning task in the day-old chick. The left and right intermediate medial hyperstriatum ventrale (IMHV) in the chick forebrain have previously been implicated in the formation of memory for this task. Using an ex vivo technique we have determined the concentrations of various fatty acids liberated from prisms prepared from these brain regions at different time points up to 24 h following passive avoidance training. At 30, 60, and 75 min posttraining the concentration of arachidonic acid, but not of other fatty acids, in prisms prepared from the left IMHV, but not the right IMHV, was enhanced compared with that in chicks trained on a nonaversive water-coated bead. To test whether arachidonic acid liberation from the left IMHV was receptor-stimulated we showed that (a) liberation of endogenous arachidonic acid from homogenate prepared from the left and right IMHV of untrained chicks was stimulated by depolarization with KCl (50 mM) and that (b) glutamate agonists of the NMDA and metabotropic subtypes of glutamate receptor stimulated release of preloaded [14C] arachidonic acid from prisms prepared from the left IMHV but not the right IMHV. These results indicate that arachidonic acid is liberated from the left IMHV following passive avoidance training in the day-old chick and may play a role as a retrograde messenger in this memory task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call