Abstract

In this chapter, the time-dependent static fatigue and cyclic fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) are investigated. The stress-strain relationships considering interface oxidation and interface wear in the interface debonding region under static and cyclic fatigue loading are developed to establish the relationships between the peak strain, the interface debonding length, the interface oxidation length, and the interface slip lengths. The effects of the stress-rupture time, stress levels, matrix crack spacing, fiber volume, and oxidation temperature on the peak strain and the interface slip lengths are investigated. The experimental fatigue hysteresis loops, interface slip lengths, peak strain, and interface oxidation length of C/[Si–B–C] and SiC/MAS composite at 566, 1093, and 1200 °C in air atmosphere are predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call