Abstract
Methodology to calculate electronic chiroptical properties from time-dependent density functional theory (TDDFT) is outlined. Applications of TDDFT to computations of electronic circular dichroism, optical rotation, and optical rotatory dispersion are reviewed. Emphasis is put on publications from 2005 to 2010, but much of the older literature is also cited and discussed. The determination of the absolute configuration of chiral molecules by combined measurements and computations is an important application of TDDFT chiroptical methods and discussed in some detail. Raman optical activity (ROA) spectra are obtained from normal-mode derivatives of the optical rotation tensor and other linear response tensors. A few selected (ROA) benchmarks are reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.