Abstract

We study transients in resonantly coupled three-level systems. Two of the levels are coupled by intense two-photon pumping, and the third one provides a probing level. Adiabatically eliminated levels appear in effective system parameters. Experimentally, this model is applicable, e.g., in resonantly enhanced parametric and harmonic generation in atomic vapors. A distinguishing feature in the system is the appearance of ac Stark shifts in the probe spectra when pumping at the two-photon resonance. The nutation signal is shown to give information on the effective two-photon Rabi frequency and on the decay rate of the dipole-forbidden two-photon coherence. Free-induction decay is strongly dominated by population-induced effects; Raman-like peaks introduced by Stark shifts may show large instantaneous gain. Gaussian pump pulses are investigated to investigate effects arising from the temporal sweeping of the two-photon Rabi flipping and the modulation of the Stark shifts. The results also provide relevant information on the gain dynamics of coherently pumped lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.