Abstract

The chapter presents a time-delayed impulsive feedback approach for the stabilization of periodic orbits in hybrid chaotic systems. A rigorous stability analysis of the proposed method is given. By using the proposed time-delayed impulsive feedback method, we consider two special applications. One application is detecting periodic orbits in a special class of hybrid system, a switched arrival system, which is a prototype model of many manufacturing and computer systems where large amount of work is processed at a unit time. The other application considers the stabilization of periodic orbits of chaotic piecewise affine systems, in particular, Chua’s circuit, which is another important class of chaotic hybrid systems. Simulations are presented to show the effectiveness of the approach proposed.KeywordsPeriodic OrbitHybrid SystemChaotic SystemSymbolic DynamicUnstable Periodic OrbitThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.