Abstract

The subthalamic nucleus (STN) plays a key role in motor control. Disorganization of its neuronal activity is implicated in the manifestation of parkinsonian motor symptoms. The aim of the present work was to study the time-course of changes in the firing activity of STN neurons in a rat model of parkinsonism. Electrophysiological recordings were done in normal rats and four groups of rats at different time points after 6-hydroxydopamine (6-OHDA) microinjection into the pars compacta of substantia nigra (SNc). Results showed a significant decrease in firing rate during the first and second weeks post lesion (5.53±0.56 and 7.66±0.73 spikes/s, respectively) compared to normal rats (11.13±0.59 spikes/s). From the 3rd week after 6-OHDA injection the firing rates returned toward baseline, with an average of 9.71±0.51 spikes/s during the 3rd week and 11.13±0.71 spikes/s during the 4th week. With regard to firing pattern, the majority of STN cells (90%) discharged regularly or slightly irregularly in normal animals. Only 4% exhibited burst activity and 6% had mixed firing patterns. After SNc-lesion, the percentage of cells exhibiting burst and mixed patterns increased progressively from 35% during the first week to 56% at week 4 post-lesion. In sum, these experiments revealed that the firing rate of STN neurons was altered only transiently following nigral lesions, whereas a progressive and stable change in the firing pattern was observed up to 4 weeks post lesion, suggesting that the persistence of bursts firing more closely relates to the motor pathologies of this rat model of parkinsonism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call