Abstract

This paper investigates the time-consistent mean-variance reinsurance-investment (RI) problem faced by life insurers. Inspired by recent findings that mortality rates exhibit long-range dependence (LRD), we examine the effect of LRD on RI strategies. We adopt the Volterra mortality model proposed in Wang et al. [(2021). Volterra mortality model: actuarial valuation and risk management with long-range dependence. Insurance: Mathematics and Economics 96, 1–14] to incorporate LRD into the mortality rate process and describe insurance claims using a compound Poisson process with intensity represented by the stochastic mortality rate. Under the open-loop equilibrium mean-variance criterion, we derive explicit equilibrium RI controls and study the uniqueness of these controls in cases of constant and state-dependent risk aversion. We simultaneously resolve difficulties arising from unbounded non-Markovian parameters and sudden increases in the insurer's wealth process. While the exiting literature suggests that LRD has a significant effect on longevity hedging, we find that reinsurance is a risk management strategy that is robust to LRD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.