Abstract

The present paper introduces a jump-diffusion extension of the classical diffusion default intensity model by means of subordination in the sense of Bochner. We start from the bi-variate process $(X,D)$ of a diffusion state variable $X$ driving default intensity and a default indicator process $D$ and time change it with a L\'{e}vy subordinator ${\mathcal{T}}$. We characterize the time-changed process $(X^{\phi}_t,D^{\phi}_t)=(X({\mathcal{T}}_t),D({\mathcal{T}}_t))$ as a Markovian--It\^{o} semimartingale and show from the Doob--Meyer decomposition of $D^{\phi}$ that the default time in the time-changed model has a jump-diffusion or a pure jump intensity. When $X$ is a CIR diffusion with mean-reverting drift, the default intensity of the subordinate model (SubCIR) is a jump-diffusion or a pure jump process with mean-reverting jumps in both directions that stays nonnegative. The SubCIR default intensity model is analytically tractable by means of explicitly computed eigenfunction expansions of relevant semigroups, yielding closed-form pricing of credit-sensitive securities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.